Sahay Global Findex data are certainly more comprehensive

Published by admin on

Sahay et. al.
(2015) examined the linkages of financial inclusion with
economic growth, financial and economic stability, as well as inequality.  The analysis provided by Sahay et. al.
demonstrated the macroeconomic ramifications of the notion of financial
inclusion and its potential impact. It shed light on the benefits and
trade-offs of financial inclusion in terms of growth, stability (both financial
and macroeconomic), and inequality. They defined financial inclusion as the
access to and use of formal financial services by households and businesses.
The paper drew on several sources of data on financial inclusion. These data
included cross-country surveys for two different years, long-time series across
several countries, and other survey-based data on firms’ access to finance. The
advantage of using a variety of sources was that the analysis can shed light on
many aspects of financial inclusion. The disadvantage was that the datasets are
not strictly comparable and have shortcomings. 


The indicators included the providers’ and the users’
sides. On the providers’ side, the index of FIA introduced in Sahay et. al.
(2015a) covered the number of commercial bank branches and ATMs per one hundred
thousand adults. On the users’ side, a number of indicators were investigated:
share of businesses and investment financed by bank credit, share of the
population with account at a formal financial institution by gender and income
groups, share of firms citing finance as a major obstacle, share of adults
using accounts to receive transfers and wages, share of bank borrowers in the
population and finally, the use of insurance products.


The main challenge in building a relationship between
long-run growth and financial inclusion was the absence of long enough time
series of financial inclusion (FI) data. For instance, the index of Financial
Institution Access (FIA) assembled by Sahay and others (2015a) had time series
– number of ATMs and bank accounts – from the IMF’s Financial Access Survey
(FAS) starting in 2004 at the earliest. Since the sample period was between
1980 and 2010, which was combined with a five-year average for all variables
(used in order to smooth out cyclical variations) did unfortunately not provide
robust and usable results in a standard GMM growth regression. Within this
framework, FIA only provided two usable time observations (averages 2000–04 and
2005–10). For this reason, GMM regressions of this type cannot test for the
impact of FIA—or other financial inclusion indicators, for that matter— as the
regressions would not pass the standard diagnostic tests. This paper used OLS
estimation for the growth and inequality regressions.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now


In comparison to the FAS data, the Global Findex data are
certainly more comprehensive and would potentially allow for a more robust
analysis. However, the Global Findex data measure FI at only two points in time
(2011 and 2014) with an assumption that relative financial inclusion did not
vary significantly over time. Hence, the Global Findex data could be interpreted
as a ranking rather than an absolute level


An ordinary least squares (OLS) estimation was conducted
taking into account a number of countries, relating an FI measure at one point
in time (or averaged over a period) with growth over a period. Ideally, one
would have initial FI related to subsequent growth (as per the early King and
Levine study) to address reverse causality:


in which i denotes country and X denotes
controls.  Additionally, one can also include
a financial depth/development variable (FIN) which could either be (i) privy
(private credit-to-GDP), (ii) FID (index of financial institution depth), or (iii)
FD (the broad financial development index).

Categories: Finance


I'm Iren!

Would you like to get a custom essay? How about receiving a customized one?

Check it out